首页> 外文OA文献 >Classification of BMI control commands from rat's neural signals using extreme learning machine
【2h】

Classification of BMI control commands from rat's neural signals using extreme learning machine

机译:使用极限学习机根据大鼠神经信号对BMI控制命令进行分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A recently developed machine learning algorithm referred to as Extreme Learning Machine (ELM) was used to classify machine control commands out of time series of spike trains of ensembles of CA1 hippocampus neurons (n = 34) of a rat, which was performing a target-to-goal task on a two-dimensional space through a brain-machine interface system. Performance of ELM was analyzed in terms of training time and classification accuracy. The results showed that some processes such as class code prefix, redundancy code suffix and smoothing effect of the classifiers' outputs could improve the accuracy of classification of robot control commands for a brain-machine interface system.
机译:最近开发了一种称为极限学习机(ELM)的机器学习算法,用于对执行目标-通过脑机接口系统在二维空间上完成目标任务。根据训练时间和分类准确性分析了ELM的性能。结果表明,分类代码前缀,冗余代码后缀和分类器输出的平滑效果等处理可以提高脑机接口系统机器人控制命令分类的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号